Ashfield Primary School - multiplication calculation policy

Our aim is for children to use mental methods when appropriate but for calculations that they cannot solve in their heads, we aim to teach children to use an appropriate written method which they can use accurately and confidently. These stages show how to build
up to a compact, efficient method of multiplication which they can use accurately. Multiplication should be taught alongside its inverse, division. Please see the attached appendix for further examples of concrete, pictorial and abstract methods

	Year group
Pre-requisites: - Uses some number names and number language accurately. - Recites numbers in order to 10. Knows that numbers identify how many objects are in a set. - Beginning to represent numbers using fingers, marks on paper or pictures. - Compare sets and say when they have the same number. Key vocabulary: More, not enough, too much, gone, all gone, bigger, hotter, older, faster, smaller, colder, younger, slower, lots, fewer, more than, less than, same, big, long, hot, old, far fast, small, short, cold, young, new, slow. Compare, double, pair, count out, how much? How many? total Pattern, puzzle, answer, right, wrong, count, sort, group, set, match, same, different, list, What could we try next? How did you work it out?	Reception Children need to learn the concept and language of amounts. They also need to have one to one correspondence and learn more advanced counting skills. Opportunities to develop multiplication skills begin in Foundation Stage 1, when the link between division and multiplication will be explored with talk about sharing during snack and provision activities. Songs will be learned which promote counting in multiples. This learning will continue in Foundation Stage 2 with looking at arrays, often found in everyday situations. For example: Children should first learn to count by rote. Then children should learn to count objects accurately using one to one correspondence. Solve problems involving doubling. Children should engage in a variety of counting songs and rhymes and practical activities. Children should begin to solve problems involving doubling. 'Two bears for you and two bears for me. How many altogether?' Children should record their work using marks they can explain. There is no requirement to use the standard symbols until Year $1(+,-,=)$

Ashfield Primary School - multiplication calculation policy

Pre-requisites:

- count reliably with numbers from 1-20 and place them in order
- say 1 more or less than a given number
- count on or back to find answers
- have practical experience of doubling

Key vocabulary:
Odd, even, count, count in $2 s, 5 s$, 10s, how many times, lots of, groups of, multiple of, multiply by, multiply, repeated addition, array, row, column, double, equal, altogether

Year 1

Count in 2s, 5 s and 10s
Solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Children need plenty of opportunities to count in equal groups of $2 s$, $5 s$ and $10 s$ using concrete objects and pictorial representations.

Children should be given lots of experience multiplying using repeated addition using concrete objects and pictorial representations. Chn should use addition (+) and the equals ($=$) signs to record their calculations.

Children should be shown how to use arrays to multiply by 2,5 and 10 with support.

'Five groups of two faces. How many altogether? $2,4,6,8,10$. '

'Two groups of five. How many altogether? 5, 10.

Ashfield Primary School - multiplication calculation policy

Pre-requisites:

- count in $2 s, 5 s$ and $10 s$
- have experience of repeated addition
- understand how to count equal groups of 2,5 and 10 using objects and pictorial
representations
- understand that division is the inverse of multiplication.

Key vocabulary:

Odd, even, count, count in $2 s$, $5 s, 10 s$, how many times, lots of, groups of, multiple of, multiply by, multiply, repeated addition, array, row, column, double, equal, altogether

Year 2

Recall and use multiplication facts for 2,5 and $10 \times$ tables.
Calculate mathematical statements for multiplication using multiplication (x) and equals ($=$) signs.
Solve problems involving multiplication using materials, arrays, repeated addition, mental methods and multiplication facts.

Children should combine groups (repeated addition) as shown in Year 1, but should vary the mathematical language they use and also write the associated number sentences. Children should be taught that multiplication can be done in any order (commutative).

Children should use Numicon to find $5=40$

groups of 10 is $30^{\prime \prime}$
groups of 10 is $30^{\prime \prime}$
times 10 is $30^{\prime \prime}$
$10+10=30^{\prime \prime}$
$10=30^{\prime \prime}$
multiple groups of a number e.g. $8 \times$

Children should also be taught that multiplication statements like 8×5 can be shown using arrays. Children should start by using concrete objects like Cuisenaire rods and be reminded that they can use either the 5 or 8 rods to find the correct answer.
They should also be taught that they can show the multiplication statement both ways around $(8 \times 5=40$ and $5 \times 8=40)$.

After using concrete objects like Cuisenaire rods and Numicon, children should be shown how to multiply by drawing their own blank number lines. Make the link to repeated addition clear, e.g. $5 \times 5=25$

Ashfield Primary School - multiplication calculation policy

Ashfield Primary School - multiplication calculation policy

Pre-requisites:

- count in $2 s, 3 s$, and $5 s$
- understand repeated addition
is a form of multiplication.
- recall multiplication facts for
the 2,5 and 10x tables.
- calculate mathematical
statements for multiplication
and use the ' x ' sign accurately.
- understand that multiplication
of two numbers can be done in
any order (commutative)
Key vocabulary:
As above
product, multiple of four, eight,
fifty and one hundred, scale up

Year 3

Recall and use multiplication facts for the 3, 4 and $8 x$ tables (and continue to practise the 2,5 and $10 x$ tables).
Calculate mathematical statements for multiplication using the x tables that they already know, including for a two-digit number times a one-digit number progressing to formal written methods.

Continue to use number lines and arrays to support multiplication, as appropriate (see Y2 guidance).

Children should be introduced to the formal column method with place value or base 10 - stage 1 no regrouping.

Example: 3×23
To progress to:

Ashfield Primary School - multiplication calculation policy

Ashfield Primary School - multiplication calculation policy

Continue to practise the formal method of short multiplication of a two-digit number by a one -digit number throughout Y 4 .

If children are confident, continue to develop short multiplication with three- digit numbers multiplied by a one-digit number.

If necessary, return to the grid method and/or expanded method first.
Step 1:

Ashfield Primary School - multiplication calculation policy

Ashfield Primary School - multiplication calculation policy

Pre-requisites:

- count in $6 s, 7 s$ and $9 s$
- be able to multiply a two or three-digit number by a onedigit number using formal written methods

Key vocabulary:
As above
Factor pairs, composite numbers, prime number, prime factors, square number, cubed number, formal written method, order of operations, common factors, common multiples

Year 5

Multiply numbers up to 4 digits by a one or two-digit number using a formal written method, including long multiplication for two-digit numbers. (Year 5)
Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.
NB Ensure that children are confident with the methods outlined in the previous year's guidance before moving on.
Build on the work covered in Y 4 with the formal method of short multiplication (two-digit number multiplied by a one-digit number).
When children are confident introduce multiplication by a two-digit number. If necessary, return to the grid method and/or expanded method first.

	2	3	x	1	5	$=$		3	4	5		
	E	s	t:	2	0	x	1	5	$=$	3	0	0
				2	3							
			x	1	5							
			1	5	$(5$	x	$3)$					
			1	0	0	$(5$	x	2	$0)$			
			3	0	$(1$	0	x	$3)$				
			2	0	0	$(1$	0	x	2	$0)$		
		3	4	5								

Ashfield Primary School - multiplication calculation policy

Ashfield Primary School - multiplication calculation policy

When children are confident with long multiplication extend with three-digit numbers multiplied by a two-digit number

		1	2	4	x	2	6	$=$	3	2	2	4		
E	s	t:	1	2	0	x	3	0	$=$	3	6	0	0	
												- When multiplying by the ones place the		
					1	2	4					exchanged number on		
					X	2	6					this line in the correctcolumn		
					7	4		(6)	x	1	2	4)		
				2 4	4	8	0	(2	0	x	1	2	4)	
				3	2	2	4						m	ultiplying by the
														ee the

Prompts in brackets can be removed when children are confident.

Ashfield Primary School - multiplication calculation policy

Ashfield Primary School - multiplication calculation policy

Pre-requisites:

- count in 6s, 7s and 9s
- be able to multiply a two or three-digit number by a onedigit and a two-digit number using formal written methods

Key vocabulary:
As above
Factor pairs, composite numbers, prime number, prime factors, square number, cubed number, formal written method, order of operations, common factors, common multiples

Year 6

Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.

Continue to practise and develop the formal short multiplication method and formal long multiplication method with larger numbers and decimals (multiply one digit numbers with up to 2 decimal places by whole numbers. Again the emphasis is on practical use in measures and money) throughout Y6. Return to an expanded form of calculation initially, if necessary (see $У 5$ guidance).

| | $£$ | 4 | .5 | 0 | x | 6 | $=$ | $£$ | 2 | 7 | 0 | 0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | | | |
| | | 4 | $\cdot 5$ | 0 | | | | | | | | | |
| x | | | | 6 | | | | | | | | | |
| $£$ | 2 | 7 | $\cdot 0$ | 0 | | | | | | | | | |
| | | 3 | | | | | | | | | | | |

Ashfield Primary School - multiplication calculation policy

Appendix : Examples of concrete, pictorial and abstract

Ashfield Primary School - multiplication calculation policy

Ashfield Primary School - multiplication calculation policy

Fluency variation, different ways to ask children to solve 6×23 :

