Ashfield Primary School - division calculation policy

Our aim is for children to use mental methods when appropriate but for calculations that they cannot solve in their heads, we aim to teach children to use an appropriate written method which they can use accurately and confidently. These stages show how to build up to a compact, efficient method of division which they can use accurately. Divison should be taught alongside its inverse, multiplication. Please see the attached appendix for further examples of concrete, pictorial and abstract methods

	Year group
Pre-requisites: - Uses some number names and number language accurately. - Recites numbers in order to 10. Knows that numbers identify how many objects are in a set. - Beginning to represent numbers using fingers, marks on paper or pictures. - Compare sets and say when they have the same number. Key vocabulary: Compare half, halve, pair, count out, share out, left, left over, how much? How many? total Pattern, puzzle, answer, right, wrong, count, sort, group, set, match, same, different, list, What could we try next? How did you work it out?	Reception Solve problems including halving and sharing. Opportunities to develop division skills begin in Foundation Stage 1, when talk about sharing during snack and provision activities will take place. Opportunities continue in Foundation Stage 2 (FS2) through provision, e.g. understanding what a half looks like. Children should be given the chance to join in with a variety of counting songs, rhymes and practical activities. In practical activities and through sharing, children should begin to solve problems involving halving and sharing. 'Can you share these strawberries between two people?' 'Half of the strawberries for you and half of the strawberries for me.'

Ashfield Primary School - division calculation policy

Pre-requisites:

- count reliably with numbers from 1-20 and place them in order
- say 1 more or less than a given number
- count on or back to find answers
- have practical experience of sharing and halving

Key vocabulary:

Odd, even, count, count in $2 s$, $5 s, 10 s$, how many times?, half, halve, share, share equally, group in pairs, group in threes etc, equal groups of, divide, divided by, left, left over

Year 1

Count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
Solve one-step problems involving division by calculating the answer using concrete objects, pictorial representations and arrays with support of the teacher.

Children should start with practical sharing using a variety of equipment and objects and should be taught to share objects into equal groups in a variety of different situations.
e.g. 'Share these six cars equally between two children. How many cars will each child have?'

Children should have plenty of opportunity to use objects, equipment and pictorial representations to solve problems involving BOTH grouping and sharing.

Children do not need to record the division calculation at this stage.

Ashfield Primary School - division calculation policy

Pre-requisites:

- count in $2 s, 5 s$ and $10 s$
- have experience of repeated subtraction
- understand how to count equal groups of 2,5 and 10 using objects and pictorial representations
- understand that division is the inverse of multiplication.

Key vocabulary:

Odd, even, count, count in $2 s$, $5 s, 10 s$, how many times?, half, halve, share, share equally, group in pairs, group in threes etc, equal groups of, divide, divided by, left, left over

Year 2

Recall and use multiplication and division facts for 2,5 and $10 \times$ tables.
Calculate mathematical statements for division using division (-) and equals ($\#$) signs.
Solve problems involving division using materials, repeated subtraction, mental methods and multiplication and division facts.
Children should be introduced to using arrays for division at the same time as using them for multiplication. They should continue to learn the difference between grouping and sharing as two ways to solve division calculations. Children should use concrete objects first, then move onto pictorial representations. Children should be taught to record division statements using the \div and $=$ signs at this stage. (Children should not use remainders at this stage.)

$12 \div 3=4$
'30 crayons shared equally between three pots.'
(Sharing)
'We have 30 crayons and put ten crayons in each pot.
How many pots do we need?' (Grouping)
6 shared between 2 (other concrete objects can also be used e.g. children and hoops, teddy bears, cakes and plates)

Ashfield Primary School - division calculation policy

Ashfield Primary School - division calculation policy

Pre-requisites:	Year 4
- count in 3s, 4 s and 8s	Recall multiplication and division facts up to 12×12.
- have experience of dividing a	Divide two and three-digit numbers by a one-digit number using formal written layout.
methods	Division using partitioning (two digits divided by one digit):
- understand the value of each	$65 \div 5=13$
digit they are dividing with	$65=50+15$ Partition 65 into 50 and 15
Key vocabulary:	$50 \div 5=10$
As above	$15 \div 5=3$
Division facts (up to 12×12), inverse, derive	$10+3=13$
	$98 \div 7=14$
	$98=70+28$ Partition 98 into 70 and 28
	$70 \div 7=10$
	$28 \div 7=4$
	$10+4=14$
	NB Children will need to practise partitioning in a variety of ways.

Ashfield Primary School - division calculation policy

	Introduce children (if not already done in Year 3) to the formal layout (bus stop method) using the multiplication tables that they already know. Children should be shown the expanded method alongside the compact method to reinforce the place value of each digit they are calculating with. e.g. $36 \div 3=12$ 'How many 3 s are there in 36?'	$\begin{gathered} 10+2 \\ 3 \longdiv { 3 0 6 } = 1 2 \end{gathered}$	$\begin{array}{r} 12 \\ 3 \longdiv { 3 6 } \end{array}$
	Children should move onto examples where the number in the tens column wouldn't produce an exact multiple and part of the number needs to be exchanged to the ones column. e.g. $72 \div 3$ = 'How many 3 s in 72?'	$\frac{24}{3 \longdiv { 1 2 }}$	Children use their knowledge of the $\times 3$ table to find 'How many $3 s$ in 70?' This gives 20 3s with 10 3s remaining. Now ask, 'How many 3s in 12?'
	Children should also be shown how to calculate with remainders, continuing to use the formal written layout.	This is shown as r 1 .	Children follow the instructions as above, then ask themselves, 'How many $3 s$ in 13?' Children use their knowledge of number facts to know that there are 4 $3 s$ in 13 , with 1 left over.
	Children should also learn how to calculate with three-digit numbers, including those calculations involving remainders.	$432 \div 5$ becomes $\begin{gathered} 8 \longdiv { 4 3 ^ { 3 } 2 } \\ 5 r^{42} \end{gathered}$ Answer: 86 remainder 2	

Ashfield Primary School - division calculation policy

Pre-requisites:

- count in 6s, 7s and 9s
- be able todivide a two or
three-digit number by a one-
digit number using formal
written methods
Key vocabulary:
As above
Factor pairs, composite
numbers, prime number, prime
factors, square number, cubed
number, formal written method
order of operations, common
factors, common multiples

Year 5

Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context.

Children should continue to use short division to divide a one-digit number by up to a four-digit number, including those examples involving remainders.

Year 6

Divide numbers up to 4 digits by a two-digit number using the formal written method of long division where appropriate, interpreting remainders according to the context. The children will progress through the following steps. The children will then find their own preferred method of working.

Dividing using factors
Step 1: work out the factors of the divisor.
Step 2: divide the dividend by one of the factors
Step 3: divide the quotient (answer) by the other factor

Ashfield Primary School - division calculation policy

Ashfield Primary School - division calculation policy

Ashfield Primary School - division calculation policy

Appendix : Examples of concrete, pictorial and abstract

Concrete	Pictorial	Abstract
6 shared between 2 (other concrete objects can also be used e.g. children and hoops, teddy bears, cakes and plates)	This can also be done in a bar so all 4 operations have a similar structure:	$6 \div 2=3$ What's the calculation?
Understand division as repeated grouping and subtracting $6 \div 2$		Abstract number line
$2 d \div 1 d$ with remainders $13 \div 4-3$ remainder 1	Children to have chance to represent the resources they use in a pictorial way e.g. see below:	$13 \div 4-3$ remainder 1 Children to count their times tables facts in their heads

Ashfield Primary School - division calculation policy

Ashfield Primary School - division calculation policy

