Ashfield Primary School - Addition calculation policy

Our aim is for children to use mental methods when appropriate but for calculations that they cannot solve in their heads, we aim to teach children to use an appropriate written method which they can use accurately and confidently. This policy shows how to build up to a compact, efficient method of Addition. Please see the attached appendix for further examples of concrete, pictorial and abstract methods

Ashfield Primary School - Addition calculation policy

Pre-requisites: - count reliably with numbers from 1-20 and place them in order - say 1 more than a given number - add two single digit numbers together - count on to find answers - have practical experience of doubling Key vocabulary: Number bonds, number line, add, more, plus, make, sum, total, altogether, inverse, double, equals, sign, tens, ones	Year 1 Add one-digit and two-digit numbers to 20 , including 0. Read, write and interpret mathematical statements involving addition (+) and equals ($=$) signs. Children should be able to solve one step addition problems using concrete objects and pictorial representations and should write the calculation alongside. $8+5=13 \quad 3+5=8$ $5+3=8$ Children should also be able to count on using a numbered number line and record their addition using the appropriate signs. Children should draw their jumps above the number line. Use language such as: 'Put your finger on number five. Count on (count forwards) three.'

Ashfield Primary School - Addition calculation policy

Ashfield Primary School - Addition calculation policy

Ashfield Primary School - Addition calculation policy

```
altogether, tens
boundary,
inverse, double,
equals, sign,
tens, ones
```



```
altogether,
inverse, double
tens, ones
```



```
Counting on in ones using an empty number line, within 100... \(28+6=34\)
```



```
...and in tens
\(28+30=58\)
```



```
'Put the biggest number first (48), and then partition the smaller number ( \(36=30+6\) )
```


Ashfield Primary School - Addition calculation policy

Ashfield Primary School - Addition calculation policy

	They may wish to represent the number to be added on (36) first using tens and ones the number (in order to remind themselves how many tens and how many ones to add on). marks underneath $\begin{array}{cc} + \text { and }=\text { signs to be introduced with missing numbers } \\ \text { e.g. } \square+6=34 & 34=6+\square \\ 28+\square=34 & 34 \square 6+28 \\ 28+6=\square & 34=\square+28 \end{array}$
Pre-requisites: - understanding of the place value of 2 digit numbers - be able to count in tens from any number - be able to add multiples of 10 together - understand how to draw a blank number line	Year 3 Add numbers with up to three digits, using formal written methods of columnar addition. Chn should be shown the expanded column method alongside the compact column method. The expanded column method should be taught using base ten equipment in a Hs, Ts and Os grid before expecting children to record their method. This is an important step as it ensures children understand the place value of each digit before moving onto the compact method. Children should become confident solving expanded and compact calculations without carrying before moving onto carrying. Expanded method (no carrying)e.g. $45+34=79$ Children should be able to partition both numbers into Hs, Ts and Os and create them using base ten equipment.

Ashfield Primary School - Addition calculation policy

Ashfield Primary School - Addition calculation policy

Ashfield Primary School - Addition calculation policy

Ashfield Primary School - Addition calculation policy

Pre-requisites:

- understanding
of place value up
to 1, 000, 000
(10,000,000 Year

6)

- understanding
of decimal
numbers

Key vocabulary: Add, addition, more, plus, make, sum, total, altogether, tens /hundreds boundary, inverse, equals, column addition, column, efficient written method, order of operations, decimal, exchange

Years 5 and 6

Add whole numbers with more than 4 digits, including using formal written method (columnar addition) use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. Non-Statutory
Pupils practise using the formal written methods of columnar addition and subtraction with increasingly large numbers to aid fluency
They practise adding and subtracting decimals, including a mix of whole numbers and decimals, decimals with different numbers of decimal places, and complements of 1 (for example, $0.83+0.17=1$).

NB Ensure that children are confident with the methods outlined in the previous

 year's guidance before moving on.Larger numbers should be introduced when children are completely confident in using the compact column method and can understand the need to exchange numbers over into the larger columns. Continue to use the words "exchange ten ones for one ten" or "exchange ten tens for one hundred" etc not "carry one". Children should not need H, T, O etc marked above each column once working with 4 or 5 digit numbers but use these if needed.
e.g. $21,848+1,523=23,371$

The digit that has been 'exchanged' should be recorded under the line in
the correct column.
$£ 154.75+£ 233.82=£ 388.57$

Ashfield Primary School - Addition calculation policy

Ashfield Primary School - Addition calculation policy

Appendix : Examples of concrete, pictorial and abstract

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears etc)		$4+3=7$ (four is a part, 3 is a part and the whole is seven)
Counting on using number lines by using cubes or numicon	A bar model which encourages the children to count on	The abstract number line: What is 2 more than 4? What is the sum of 4 and 4 ? What's the total of 4 and 2? $4+2$
Regrouping to make 10 by using ten frames and counters/cubes or using numicon: $6+5$	Children to draw the ten frame and counters/cubes	Children to develop an understanding of $\begin{aligned} & \text { equality e.g } 6+\square=11 \text { and } \\ & 6+5=5+\square \quad 6+5=\square+4 \end{aligned}$

Ashfield Primary School - Addition calculation policy

Ashfield Primary School - Addition calculation policy

| Use of place value counters to add HTO + |
| :--- | :--- | :--- | :--- |
| TO, HTO + HTO etc. once the children have |
| had practice with this, they should be able to |
| apply it to larger numbers and the abstract | | Chidren to represent the counters e.g. like |
| :--- |
| the image below |

Fluency variation, different ways to ask children to solve 21+34:

